Antiproliferative activity of gambogic acid isolated from Garcinia hanburyi in Hep3B and Huh7 cancer cells.

نویسندگان

  • Parry Ngan Hon Lee
  • Wing Shing Ho
چکیده

The anticancer activities of gambogic acid (GA) on two hepatocellular carcinoma cells with either p53 deletion (Hep3B) or p53 mutation (Huh7) were investigated in the present study. GA inhibited the growth of Hep3B and Huh7 through similar apoptotic pathways. After treatment of Hep3B and Huh7 with GA for 24 h, the IC₅₀ was determined for both cell lines at 1.8 and 2.2 µM, respectively. The results showed that both cancer cells underwent morphological changes and DNA fragmentation. GA induced apoptosis in the two cell lines through caspases-3/7, -8 and -9 in the mitochondrial pathway. The results suggest that both the caspases in the extrinsic death receptor pathway and the mitochondrial-dependent pathway are involved in the GA-induced cell apoptosis. The inhibitory effects of GA on Hep3B and Huh7 are independent of p53-associated pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo antiangiogenic activity of caged polyprenylated xanthones isolated from Garcinia hanburyi Hook. f.

Eleven known caged polyprenylated xanthones 1-11 were isolated from the resin of Garcinia hanburyi Hook. f., and their structures were identified by their MS, NMR and UV spectra. These xanthones showed significant cytotoxicities against four human cancer cell lines (HeLa, A549, HCT-116, and HepG-2) and strong inhibition against the proliferation of the HUVEC cell line in vitro by the MTT method...

متن کامل

Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism.

Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play...

متن کامل

Gambogic acid inhibits the catalytic activity of human topoisomerase IIalpha by binding to its ATPase domain.

This study is intended to characterize the cellular target of gambogic acid (GA), a natural product isolated from the gamboge resin of Garcinia hurburyi tree, which possesses potent in vitro and in vivo antitumor activities. The antiproliferative activity of GA was further confirmed here in a panel of human tumor cells and multidrug-resistant cells. We found that GA significantly inhibited the ...

متن کامل

Gambogic acid covalently modifies IκB kinase-β subunit to mediate suppression of lipopolysaccharide-induced activation of NF-κB in macrophages

GA (gambogic acid) is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi with a long history of use as a complementary and alternative medicine. The antitumour activity of GA has been well demonstrated and is thought to arise partly from the associated anti-inflammatory activity. Recent studies have indicated that the antitumour activity of GA is mediated ...

متن کامل

Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis.

The transcription factor, STAT3, is associated with proliferation, survival, and metastasis of cancer cells. We investigated whether gambogic acid (GA), a xanthone derived from the resin of traditional Chinese medicine, Garcinia hanburyi (mangosteen), can regulate the STAT3 pathway, leading to suppression of growth and sensitization of cancer cells. We found that GA induced apoptosis in human m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2013